博客
关于我
python_链式编程技术_管道技术
阅读量:386 次
发布时间:2019-03-05

本文共 1004 字,大约阅读时间需要 3 分钟。

链式编程技术与管道技术

在处理数据集时,经常会发现多次变换后产生的临时变量实际上并未在分析中使用。例如:

df = load_data()df2 = df[df['col2'] < 0]df2['col1_demeaned'] = df2['col1'] - df2['col1'].mean()result = df2.groupby('key').col1_demeaned.std()

虽然这段代码没有使用真实数据,但它揭示了一些新的方法。首先,DataFrame.assign 是一种类似 df[k] = v 的函数式方法,可以用来对 DataFrame 进行列赋值。它的使用方式是返回修改后的新 DataFrame,而不是在原 DataFrame 上进行修改。因此,以下两种写法是等价的:

# 常规非函数式写法df2 = df.copy()df2['k'] = v# 函数式写法df2 = df.assign(k=v)

在链式编程中,需要注意临时对象的使用。例如:

df = load_data()result = (df          .pipe(f, arg1=v1)          .pipe(g, v2, arg3=v3)          .pipe(h, arg4=v4))

df.pipe(f)f(df) 是等价的,但 pipe 方法使链式编程更加便捷。此外,pipe 也可以接受类似函数的参数,即可调用的对象(callable),这对于复用操作非常有用。

在处理分组数据时,以下方法可以有效地将操作转换为可复用的函数:

def group_demean(df, by, cols):    result = df.copy()    g = df.groupby(by)    for c in cols:        result[c] = df[c] - g[c].transform('mean')    return result

可以通过以下方式使用:

result = (df          .pipe(group_demean, ['key1', 'key2'], ['col1'])          .groupby('key')          .col1_demeaned.std())

通过这种方式,链式编程使得数据转换更加灵活和可读。

转载地址:http://fnrg.baihongyu.com/

你可能感兴趣的文章
OC字符串方法汇总
查看>>
OC学习6——面相对象的三大特性
查看>>
OC点语法介绍和使用以及@property关键字
查看>>
oc知道经纬度求位置
查看>>
OC高效率52之提供“全能初始化”方法
查看>>
oc--习题
查看>>
oday!POC管理和漏洞扫描小工具
查看>>
ODBC的JAR包和PLSQL
查看>>
ODE网络:一场颠覆RNN的革命即将到来
查看>>
Odin 开源项目教程
查看>>
odoo14配置阿里云免费SSL证书
查看>>
odoo系统局域网及外网访问?快解析内网穿透方案教程
查看>>
Odoo:在选项卡中重用来自另一个模型的TreeView
查看>>
Odoo:如何将SQL语句转换为域
查看>>
ODP.Net Tips
查看>>
OD字符串条件断点 [STRING[ESP+8]] == "123456"
查看>>
OD调试的程序无法处理例外
查看>>
OEA ORM中的分页支持
查看>>
ofbiz 定义
查看>>
ofborg 项目常见问题解决方案
查看>>